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1. Introduction

Recent experimental data [1] provides evidence for an early universe inflation [2 – 4] and

quite remarkably even makes predictions about some of the parameters that characterize

models of inflation.

String theory, however, does not seem to provide, as yet, a particularly natural setup

for inflation (for reviews of recent progress see [5, 6]). The basic problem is that the typical

potentials for the scalars in string theory are simply not flat enough to generate a period

inflation.

Recently [7 – 11] it was realized that there is a relatively simple way to evade this

problem. If the inflaton potential has an inflection point (or an almost inflection region)

then a large amount of inflation will be generated around the inflection point (region),

provided that the inflaton spends enough time in this region.1 Thus if the initial condition

for the inflaton is near the inflection point, then the number of e-foldings will be large

(in fact, very large). However, if the initial condition of the inflaton is away from the

inflection point (which is the generic case), then the inflaton will overshoot the inflection

point without inflating the universe. In other words, the Hubble friction is not sufficient

to slow down the inflaton at the inflection point, and the inflaton will not spend enough

time near the inflection point to generate inflation. This can be viewed as a limit of the

overshoot problem discussed in [15].

The aim of this paper is twofold. First, we demonstrate in the context of modular

inflation [16, 17] that there are a lot of simple examples of inflection point potentials in

string theory.2 Second, we show that quite generically string theory resolves the main

drawback of inflection point inflation - the overshoot problem discussed above. The nice

aspect of this resolution is that it involves stringy degrees of freedom and so the supergravity

1Inflection point inflation was discussed also in the context of MSSM [12 – 14].
2More complicated examples, in the context of brane inflation were discussed recently in [8, 9, 11, 10].
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fields by themselves are not sufficient (for other examples of stringy degrees of freedom that

help in stabilization of moduli fields, namely through trapping by particle production near

ESPs, see [18 – 21]).

The paper is organized as follows. In section 2 we summarize some of the general fea-

tures of inflection point inflation that are relevant for our work. In section 3 we review the

different terms in the potential for the radion and show that an inflection point potential

can be easily constructed using these terms. We start section 4 by numerically demon-

strating the overshoot problem associated with inflection point inflation. Then we describe

the stringy mechanism that resolves this problem. We conclude with some comments in

section 5.

2. Inflection point inflation

In this section we collect some of the general properties of inflection point inflation (IPI).

Most of the observations made in this section can be found in [12 – 14].

We assume that the inflaton, denoted by φ, has a canonically normalized kinetic term

and a potential with an inflection point at φinflection. Therefore the potential near φinflection

takes the form

V (φ) = Vinflection − β(φ − φinflection)3, (2.1)

and the slow roll parameters are

ǫ =
1

2

(

V
′

V

)2

=
9β2(φ − φinflection)4

2V 2
inflection

, η =
V

′′

V
= −

6β(φ − φinflection)

Vinflection

. (2.2)

We see that near φinflection the conditions for slow roll inflation are satisfied, and that ǫ ≪ η.

This will play a role momentarily.

Theoretically the nicest feature of IPI is that during inflation the expectation value of

φ need not vary over super-Planckian distances as can be seen from

N =

∫

V

V ′
dφ ≈

Vinflection

3β(φstart − φinflection)
. (2.3)

This is of particular importance in string theory where the inflaton typically has either a

direct or indirect (U-dual) geometrical meaning, which makes it problematic to vary it over

super-Planckian distances.

At a more practical level the big advantage of IPI is that if the low energy approxi-

mation one uses is valid at φinflection then it is valid throughout the period of inflation. In

the context of string theory this means that if the supergravity approximation is valid at

φinflection then it can be used to describe the whole process of inflation (but not necessarily

of re-heating). This is in contrast with other models of inflation where, typically, the need

to generate a large number of e-foldings pushes the inflaton either away from the region of

validity of the approximation or away from the region of slow roll.

As far as observation goes the sharpest prediction of IPI is that the spectral index, ns, is

smaller than 1 by a considerable amount. This is obtained from the following consideration.
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In the slow roll approximation the spectral index is given by

ns ≈ 1 − 6ǫ + 2η ≈ 1 + 2η ≈ 1 −
12β(φstart − φinflection)

Vinflection

, (2.4)

where we have used the fact that ǫ ≪ η. Combining this with (2.3) we find that3

ns ≈ 1 −
4

N
≈ 0.933, (2.5)

where the last estimate is for N = 60. This value of ns is within the range of current

observational limits that give (for small r) ns = 0.95 ± 0.02.

It would have been great if eq. (2.5) was a sharp prediction of IPI. This, however, is not

the case since there are at least two kinds of corrections to eq. (2.5) that are not negligible.

The first is due to the fact that a more generic situation is to have an approximate inflection

point than an exact inflection point. This will clearly modify the prediction for ns. The

second modification is due to time dependent potentials that appear in string theory and

will play a key role in the present paper. Thus eq. (2.5) should not be viewed as an exact

prediction of the models discussed here. However, since both modifications are expected

to be small, the fact that ns is smaller than 1 by a significant amount is a prediction of

the models of (almost) IPI.

As mentioned above a key feature of IPI is that the universe inflates only when φ ∼
φinflection. This implies that models of IPI are highly sensitive to the initial condition. If

the initial condition is such that φinitial is near φinflection then the model works fine, in the

sense that N is large. But for generic values of φinitial the inflaton acquires a large velocity

by the time it reaches φinflection and it simply crosses the inflection point without inflating

the universe. Simply put, the inflaton overshoots the inflection point. It is the purpose of

this paper to show that stringy realizations of IPI resolve this problem.

For later use we also mention that the COBE normalization condition gives

V0

β2
≈ 0.33 108N4. (2.6)

In the next section we shall see that it is easy to satisfy this condition in the stringy models

of inflection point inflation.

3. IPI in string theory

Our goal in this section is to show that models of IPI can be found in string theory. In the

context of brane inflation this was shown in [8 – 10]. Here we focus on modular inflation

in which one of the moduli fields is the inflaton and the other moduli fields are assumed

to be stabilized with a higher mass than the characteristic mass scale associated with the

inflaton (for a recent review on moduli stabilization see [22]). We consider the case where

the inflaton is the radion. We start by summarizing the various known contributions to

the potential of the radion, and then we show that they can be combined to yield IPI.

3Here we are assuming that the inflanton does not overshoot the inflection point. As we shall see this is

the case in the stringy realization of IPI.
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The setup we work with is the usual one with a compact manifold M of dimension

d = 6. For simplicity we assume that the compact manifold is characterized by one length

scale, L, and so the volume of M is VolM = cLd, where c is a dimensionless constant of

order one.

Before we discuss the various ways to generate a potential for L we recall that it is

useful to describe the potential in the Einstein frame, where the kinetic term for L does

not mix with the kinetic term of the graviton. This ensures that the potential we find for

L can be interpreted in the standard way. We start with the Einstein-Hilbert action in

s = 4 + d dimensions and KK reduce it to four dimensions to find

1

16πGs

∫

dsx
√

gsRs, ⇒
c

16πGs

∫

d4x
√

g4R4L
d. (3.1)

We see that in this frame the four dimensional Newton constant is Gs/(cL
d), and so

it depends on the expectation value of the four dimensional field L. To suppress this

dependence we rescale the metric

g4µν → gEµν = (L/L0)
dg4µν , (3.2)

where L0 is a constant. This leads to the standard 4d EH action

S1 =
cLd

0

16πGs

∫

d4x
√

gERE , (3.3)

where the 4D Newton constant does not depend on the expectation value of L

GN =
Gs

cLd
0

. (3.4)

Now that the kinetic terms of L and the graviton do not mix we can turn to the various

static contributions to V (L).

• Contributions due to (3+p)-branes:

By (3+p)-branes we mean branes that wrap p cycles in M and all the four non-

compact directions. Namely, from a four dimensional perspective these are space-

filling branes. Their action in the frame (3.1) is

Np+3T3+p

∫

d4x
√

g4L
p, (3.5)

where Np+3 is the number of (3+p)-branes and T3+p is their tension. To find the

potential in the Einstein frame we rescale (3.2). This rescaling gives a factor of

(L0/L)d/2 for each of the four non-compact directions. Therefore the potential is

V3+p = N3+pT3+pL
2d
0

1

L2d−p
. (3.6)

It is interesting to note that this potential goes to zero in the decompactification limit

(L → ∞). This is a somewhat counterintuitive result since in this limit the size of

the brane blows up like Lp and so does the action (3.5). It is only due to the rescaling

to the Einstein frame that the potential vanishes.
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• Contributions due to l-fluxes:

The relevant term in the 4 + d dimensional action is

∫

dsx
√

gsclF
2
l , (3.7)

where the cl’s are constants that typically depend on the value of the other moduli.

Now suppose that we have N units of Fl (i.e.
∫

l−cycle Fl = Nl) then we find in the 4d

effective action (in the Einstein frame) the following potential for L

Vl−flux = N2
l clL

2d
0

1

Ld+2l
. (3.8)

• Contributions due to the curvature of M :

The EH action in 4 + d leads also to the following term in 4D

1

Gs

∫

d4x
√

g4(L0/L)2d

(
∫

ddx
√

gdRd

)

. (3.9)

On dimensional ground
∫

ddx
√

gdRd = kMLd−2 where kM is a dimensionless param-

eter that (depending on the topology of M) can be negative zero or positive. Thus

we find

Vcur =
kML2d

0

Gs

1

Ld+2
. (3.10)

Note that when M is a CY manifold kM vanishes.

There are also non-perturbative contributions due to (-1+p)-branes and gaugino con-

densation. These are exponentially small in L and will not play a role here.

When attempting to use these potentials to construct models of inflation it is important

to make sure that the scalar is canonically normalized. This ensures that also in dynamical

situations, such as inflation, the potential has the usual interpretation. In the case at hand

we denote the canonically normalized scalar field associated with L by φ and the two are

related in the following way (for d = 6)

L = eαφ with α =
1√
24

. (3.11)

Before discussing IPI let us show that none of the terms discussed above leads to

inflation by itself. With a single contribution V (L) takes the form

V (φ) =
V0

LC
= V0 exp

(

−
√

2

k
φ

)

with k = 48/C2. (3.12)

Such a potential is known to yield exact cosmological solutions [23]. For a flat universe

ds2 = −dt2 + a(t)2dx2
i i = 1, 2, 3 (3.13)

– 5 –
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we have

a(t) = a0t
k, (3.14)

φ =
√

2k log

(
√

V0

k(3k − 1)
t

)

,

which implies a universe with

w =
P

ρ
= −1 +

2

3k
, (3.15)

where as usual P is the pressure and ρ is the energy density. Since all the examples

mentioned above have C ≥ 7 and since the condition for an accelerating universe is k > 1

we see from (3.12) that none of the stringy contributions to V (L) give an accelerating

universe, let alone a universe with ns close to 1.4 This is believed [24] to be a general result

valid for all moduli, not necessarily the radion.

It is therefore particularly interesting that a combination of these potentials can give

an inflection point inflation. For this to happen we need the potential to get contributions

from three terms

V = a1 exp(−j1αφ) + a2 exp(−j2αφ) + a3 exp(−j3αφ), (3.16)

with, say, j1 > j2 > j3, a1, a3 > 0 and a2 < 0.

Note that the requirement a2 < 0 can be satisfied since not all the terms discussed

above are positive definite. Vcur, for example, can be negative. When L is small this

might lead to some non-trivial effects [25, 26] due to winding modes that become light.

We, however, are interested in the large L case in which nothing dramatic is expected to

happen if Vcur is negative. Another way to generate a negative potential is via orientifolds.

Their tension is negative and so they induce negative V3+p. This puts some mild constraints

on the possible values of N3+p that can be satisfied. To conclude, using Vp+3, Vl−flux and

Vcur one can construct many examples of inflection point inflation in string theory.

For concreteness in the rest of the paper we focus on a particular example with j1 = 12,

j2 = 10 and j3 = 8. We emphasize, however, that the conclusions we present below do

not depend on this particular choice. In particular, the stringy resolution of the overshoot

problem works equally well for other choices of j1, j2 and j3.

For j1 = 12, j2 = 10 and j3 = 8 an inflection point at φ=φinflection =
√

24 log(Linflection)

is obtained if we take

a1

a3

=
2

3
L4

inflection,
a2

a3

= −
8

5
L2

inflection. (3.17)

Since an overall rescalling of the potential does not change φinflection only ratios of the a’s

appear in this condition. From (3.17) we see that, as expected, to have a potential with

an inflection point we need to fine tune the parameters in the potential

a2
2

a1a3

=
96

25
. (3.18)

4Moreover even if there was a stringy potential with a small enough C to accelerate the universe there

would still be the problem of a graceful exit. Namely, with such a potential inflation will not end. This is,

of course, interesting for models of quintessence but not for inflation.
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In the last section we shall see that this condition can be relaxed.

Expanding near the inflection point we find that

V0 =
a3

15L8
inflection

, β =
a3

√
24

54L8
inflection

, (3.19)

where we are using the notation of eq. (2.1), and so the COBE normalization condi-

tion, (2.6), gives

Linflection ≈ 6.7 a
1/8

3

√
N, (3.20)

which implies that for typical values of a3 the supergravity approximation is valid. This

is not surprising since usually the COBE normalization condition implies that the energy

scale associated with inflation is a few orders of magnitude smaller than the Planck scale.

4. The overshoot problem and its stringy resolution

As explained above the main drawback of models of IPI is that they suffer from the over-

shoot problem. This problem is generic and appears also in the stringy realization of models

of IPI discussed in the previous section. This is illustrated in figure 1. In this figure we

see how sensitive inflation is to the initial condition. If the initial condition is near the

inflection point then the number of e-foldings, N , is large. But if the initial condition is

even slightly away from the inflection point, inflation does not occur since φ overshoots

φinflection. Interestingly enough string theory provides a simple dynamical resolution to this

problem which we shall now discuss.

In the previous section we described some of the static terms in V (L). There are,

however, also time dependent contributions to V (L). These are due to particles with

masses that depend on L. Denoting the particle densities by ni, the potential they induce

is

Vi(L, t) = ni(t)mi(L). (4.1)

This potential is time-dependent because ni(t) dilutes as the universe expands

ni(t) ∼
1

a3(t)
. (4.2)

Most known examples in string theory, such as perturbative states, yield m(L) → 0 in the

decompactified limit, and so Vi(L, t) vanishes in this limit and does not help much with the

overshoot problem. However, non-perturbatively there are (0+p)-branes (namely, branes

that wrap p cycles in M and are point-like objects in the four dimensional uncompactified

space-time) with m(L) → ∞ in the decompactified limit.

To be precise the mass of a (0+p)-brane is

m0+p = T0+pL
p

(

L0

L

)d/2

, (4.3)

where T0+p is the tension of the brane. The factor of Lp is due to the volume of brane, while

the (L0/L)d/2 factor is due to the transformation to the Einstein frame (coming from the

– 7 –
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Figure 1: A numerical illustration of the overshoot problem: In both cases we take Linflection = 3

and display φ as a function of time. In the picture to the left we take φinitial = 12

13
φinflection and

obtain a decent amount of inflation when φ crosses φinflection ≈ 5.38. In the picture to the right

we take φinitial = 6

7
φinflection. Despite the fact that this is fairly close to φinflection inflation is not

generated.

√
gtt in the particle action). We see that, unlike in the case of (3+p)-branes (3.6), now, for

p > d/2, the volume term dominates and we find that m(L) → ∞ in the decompactification

limit. Therefore, such (0+p)-branes lead to time dependent potentials that blow up when

L → ∞
V0+p = n0+pT0+pL

3
0L

p−3. (4.4)

We would like to argue now that this kind of time dependent potential is exactly what

is needed to resolve the overshoot problem of IPI. The basic idea is simple5 and illustrated

in figure 2. The static piece of the potential is denoted by the red/solid line and the time

dependent piece of the potential by the green/dashed line. In (a),(b) the static potential

is steep, but since there has not been significant expansion the time-dependant potential

is able to balance it, preventing φ(t) from acquiring a large velocity. Heuristically, φ(t)

(denoted by the blue/filled circle) follows the dilution of the time dependent potential.

In (c) φ(t) enters the shallow region (where the slow roll parameters are small) where

inflation takes place and the time dependent potential starts to slow down exponentially.

In (d) φ(t) is dominated solely by the static potential but its velocity is now low enough

to allow prolonged inflation.

To see if this heuristic argument actually holds we have to solve the equations of motion

which for a flat FRW universe are (we take the reduced Planck mass to be 1)

3H2 =
1

2
φ̇2 + Vstatic + V0+p,

ṅ0+p = −3Hn0+p, (4.5)

φ̈ + 3Hφ̇ = −
d

dφ
(Vstatic + V0+p)

5In fact, it has some similarities with thermal inflation [27, 28].
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(a) (b) (c) (d)

Figure 2: A heuristic demonstration of how a time dependent potential, that scales like 1/a3(t),

can resolve the overshoot problem of IPI.

Linflection 2 5 8 10 15 20 25

ninitial−min
0+6 0.098877 0.005431 0.00081 0.000316 0.000054 0.000015 0.000005

Table 1: The minimal value of ninitial
0+6 that gives enough inflation for some values of Linflection.

where Vstatic is given by (3.16), (3.17) with j1 = 12, j2 = 10, j3 = 8 and V0+p by (4.4).

We assume that other moduli fields, in particular the dilaton, are not too extreme and so

all the constants that appear in Vstatic and V0+p are of order 1 in string units. We will get

back to this point momentarily.

The question that we wish to address is whether a generic initial condition will give

a large enough N to be consistent with experiment. Since we are working within the

supergravity approximation, the approximation breaks down at L < 1. This means that

we should take Linflection > 1 (for the approximation to be valid during inflation) and that

the most natural initial condition is Linitial ∼ 1 (which gives φinitial ∼ 0). Recall that

the illustration in the beginning of this section shows (for n0+p = 0) that for these kind

of initial conditions the inflaton overshoots the inflection point and the universe does not

inflate. In fact figure 1 shows that this happens already when Linitial/Linflection = 6/7.

To see what happens for n0+p > 0 we have to solve (4.5) numerically. On general

grounds we expect ninitial−min
0+p , which is the minimal initial value of n0+p (with φinitial = 0

and φ̇initial = 0) that is needed to generate a significant amount of inflation, to become

smaller as we increase Linflection. The reason is simply that Vstatic becomes weaker at large

L while V0+p becomes stronger.

Table 1 summarizes our findings for p = 6, a3 = 1 and N = 100.

We see that the needed values of ninitial
0+p are small and become smaller and smaller

as we increase Linflection. This is particularly important because it implies that in the

supergravity region, Linflection ≫ 1, a tiny ninitial
0+p is sufficient to slow down φ enough by the

inflection point for the universe to inflate significantly.

The nice feature of this mechanism is that a small ninitial
0+p is expected to be generated

by quantum effects and need not be imposed by hand! The reason is the following. When

Linitial ∼ 1 the Hawking temperature associated with the initial vacuum energy is TH ∼√
Vinitial ∼ 1. Since the mass of the (0 + p) -brane is also of order 1 we expect ninitial

0+p to

be of order 1 as well. Thus ninitial
0+p bigger than the values that appear in the table above is

– 9 –
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expected to be generated quantum mechanically.

Note that many other degrees of freedom will be excited at such a high temperature

and one might wonder if these could alter our conclusion. We do not expect this to be

the case since the effect such excitation could have on the inflanton becomes negligible

(compared to the (0+p)-branes) by the time L approaches Linflection. The reason is that

the mass of the (0+p)-branes grows with L while the masses of all other excitation does not.

This discussion depends, of course, on the value of the other moduli that we assumed

to be stabilized. In particular the value of the dilaton has a significant effect since TH ∼ g

while M0+p ∼ 1/g, and so a natural ninitial
0+p scales like e−M0+p/TH ∼ e−1/g2

. This means

that one cannot send the string coupling constant to zero while fixing Linflection. However,

as the table above shows, for a large enough Linflection we can have g that is considerably

smaller than 1.

5. Concluding remarks

We end with some comments:

• Our numerical simulations indicate that the mechanism described here works quite

generally. For example it works fine also for 3 < p < 6, though it is not as efficient

in the sense that ninitial−min
0+p is a bit larger than ninitial−min

0+6 . As mentioned above it

also works for other choices of j1, j2 and j3.

• Here we focused on the case where the radion is the inflaton and show that models

of IPI are common in string theory and resolve the overshoot problem. It should

be interesting to see if this can be generalized to other setups of IPI. A particularly

interesting one is the one of [8 – 10].

• Taking ninitial
0+6 to be bigger than ninitial−min

0+6 by a factor of order 1 leads to N that

is practically infinite. This implies that a large enough N is generated with rather

generic initial conditions even when the potential does not have an exact inflection

point but rather an approximated inflection region. Namely, eq. (3.18) can be relaxed.

Thus one needs to tune but not fine tune the parameters in the potentials. This

also means that stringy corrections to the potential are unlikely to change our main

conclusions. The fact that eq. (3.18) can be relaxed is particularly important since

a1, a2 and a3 are quantized once all other moduli are fixed (which is our working

assumption).

To demonstrate this behavior, we explore the range of deviation from the exact inflec-

tion point parameters in our example above that would still allow enough e-foldings

(N > 60) with ninitial
0+6 = 1

100
. Table 2 shows the maximal deviation for a1 per value

of Linflection, according to a1 = a1 + δa1 (we allow a1 to vary in the direction that

causes V to lose its extremal point and monotonically approach zero):

– 10 –
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Linflection 5 8 10 15 20 25

δa1 0.01 0.08 0.2 1 3 8

Table 2: The maximal deviation of a1 that gives enough inflation as a function of Linflection.

We see that as we increase Linflection the sensitivity to the parameters of the potential

decreases, and in particular since δa1 is of order 1 the quantization conditions of the

ai’s can be satisfied.
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